Prioritized Buffer Control in Two-tier 360 Video Streaming

Fanyi Duanmu, Eymen Kurdoglu, Amir Hosseini Yong Liu and Yao Wang Dept. Electrical & Computer Engineering, Tandon School of Engineering New York University Brooklyn, NY

- Motivation and Technical Challenges
- □ Two-Tier 360V Streaming Solution
- Prioritized Buffer Control in Two-Tier 360V Streaming
- System Settings and Evaluations
- Experimental Results
- Conclusions and Future Work

Motivation

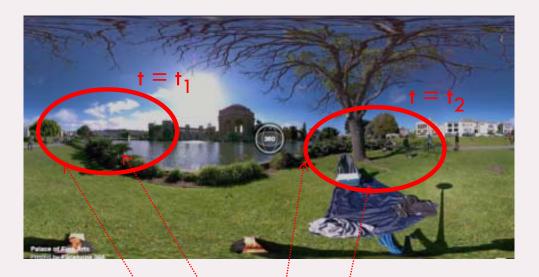
Virtual Tour:

Sport:

Show:

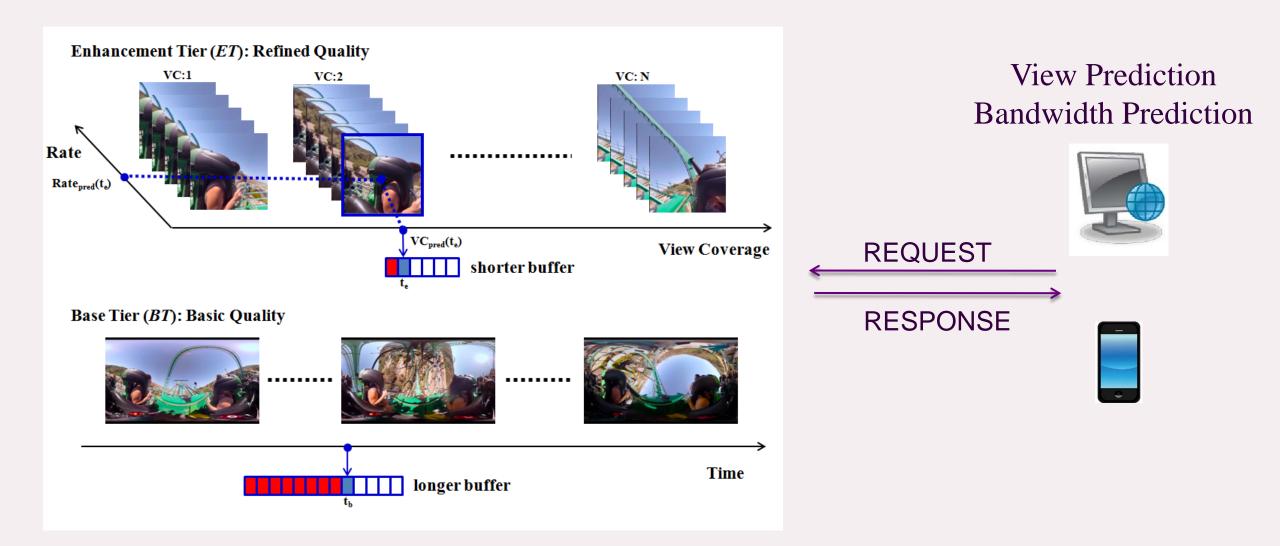
Gaming:

Entertainment:



Technical Challenges

Challenge 1:Bandwidth Requirements


Challenge 2:
 User View Direction Dynamics

- Base tier streams chunks covering the entire 360 degree view in low quality with a long prefetching buffer.
- Enhancement tier streams chunks covering the predicted
 FoV with a short prefetching buffer.
- When the predicted FoV is correct and the enhancement tier chunks arrive on time, the viewer sees high quality.
- □ Otherwise, the viewer sees low quality.

Two-Tier 360V Streaming System

LAB

NYU TANDON SCHOOL OF ENGINEERING

Prioritized Buffer Control

Prioritized Buffer-Based 360 Video Streaming

Prioritized base-tier (BT) downloading to ensure video playback continuity.

If $q^b(t) < q^b_{ref}$, <u>ALWAYS</u> sequentially download base-tier chunks until sufficient

Proportional-Integral (PI) control-based enhancement-tier (ET) downloading to utilize residual bandwidth $t_{t}^{(s)}$

Control Signal:
$$u(k) = K_p \left(q^e \left(t_k^{(s)} \right) - q_{ref}^e \right) + K_I \sum_{t=0}^{\infty} \left(q^e(t) - q_{ref}^e \right)$$

Target Request Rate: $\hat{R}(k) = \min\left[(u(k) + 1,), \frac{\Delta(k)}{\tau}\right] \cdot \hat{b}(k)$

 $K_p K_I$ P-I-controllers

 $\langle q_{ref}^{b}, q_{ref}^{e} \rangle$ BT and ET target buffer lengths $\langle q^{b}(t), q^{e}(t) \rangle$ BT and ET dynamic buffer lengths $\hat{b}(k)$ Predicted bandwidth

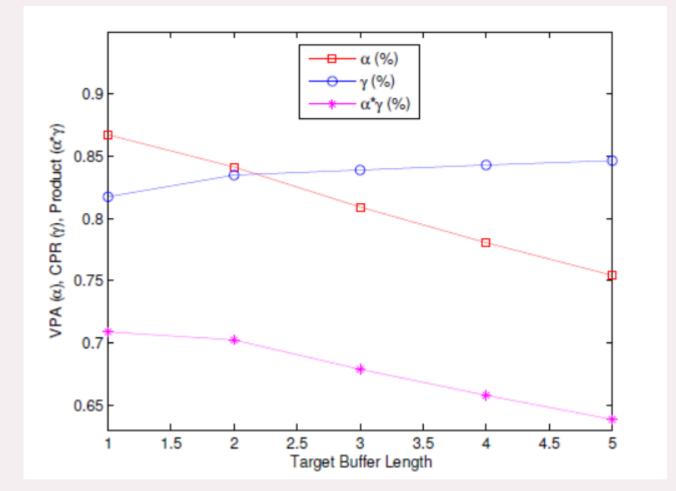
- $\Delta(k)$ Remaining time of chunk k before display deadline
 - τ Video chunk duration

Prioritized Buffer Control

Prioritized Buffer-Based 360 Video Streaming

 $q^{e}(t)$ should be determined to balance the system robustness against network variation and the prediction accuracy.

In this work, $q^{e}(t)$ is chosen based on video rendering rate metric:


$$R_{VRR}(q_{ref}^{e}) = \frac{R_b}{A_b} + \alpha \cdot \gamma \cdot \frac{R_e}{A_e}$$

- R_b R_e BT and ET chunk bit-rates
- A_b A_e BT viewing area (i.e., 360V full scope), ET viewing area (i.e., FoV coverage area)
 - α View Prediction Accuracy (VPA), i.e., the average overlapping ratio between the predicted view coverage and user's actual FOV.)
 - γ Chunk Pass Rate (CPR), i.e., the likelihood that a requested chunk can be delivered before its display deadline.

Prioritized Buffer Control

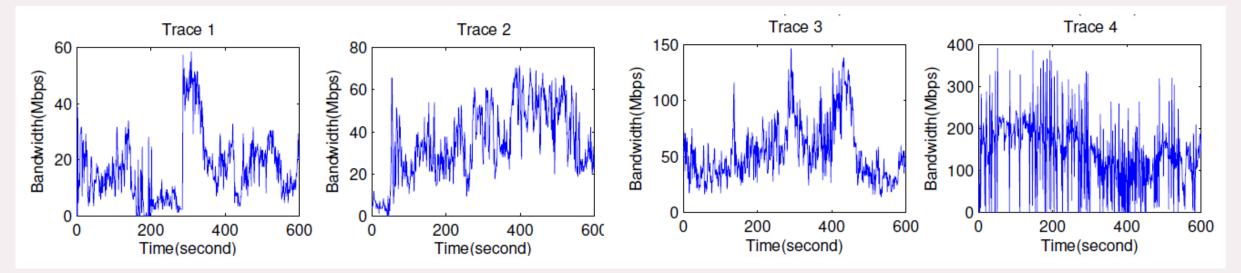
Prioritized Buffer-Based 360 Video Streaming

The ET target buffer length that maximizes the product of *VPA* and *CPR* should maximize the delivered video rendering rate, and therefore maximize the user end average video quality.

System Settings and Evaluations

Videos:

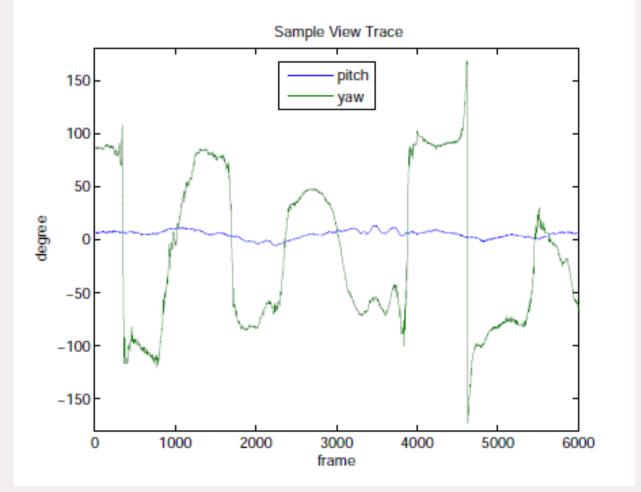
Two test videos are used: "MegaCoster" and "Amsterdam"


Each chunk is horizontally partitioned into 12 overlapping *ET* viewports and vertically partitioned into 3 overlapping *ET* viewports, each covering 120×90 degrees.

The *ET* chunks encodes the difference signal between original 360 video and the *BT* low-rate video in three different bitrate settings R_1 , R_2 and R_3 .

System Settings and Evaluations

Network Bandwidth Trace:


Sample Network Trace. Collected over a 3.5G HSPA^[3] cellular network to represent the most typical bandwidth variations in a cellular environment. Scaled up to mimic the 4K-30Hz-8-bit 360 degree video bitrate range (e.g., up to 400 Mbps).

[3] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, and J. Lyu. "Real-time Bandwidth Prediction and Rate Adaptation for Video Calls over Cellular Networks," IACM Multimedia Systems Conference, 2016.

System Settings and Evaluations

□ View Direction Trace Collection:

Sample View Trace.

Collected From 4 users wearing a Google Cardboard with a Motorola Nexus-6 smart-phone playing our test 360 videos. Motion data (yaw, pitch, roll) captured through head tracker program.

Bandwidth Prediction:

The sustainable transmission rate for the next chunk set to the average throughput for downloading the last received chunk (from either BT or ET).

□ View Prediction:

The desired viewport center for the incoming video chunk is linearly predicted based on the past 30 samples collected from the client.

Evaluation Metric

Delivered Video Rendering Rate (*VRR*)

$$VRR(n) = w_b \cdot R^b(n) + w_f \cdot R^e(n)$$

$R^{b}(n) R^{e}(n)$ Delivered BT and ET bitrate for chunk n

- w_b Overlapping portion of the desired FOV and the 360 view decoded from the BT (in our setting, 1/6)
- W_f Overlapping portion between the ground-truth FOV per frame and the VC of the downloaded ET chunk.

□ Video Freeze Ratio (*VFR*)

The percentage of total time that video buffer underflows (i.e. no bits are available for the user FOV at the display time).

Benchmark 1 (*BS1: All-360*): simulates the conventional
 DASH streaming framework, in which videos in the entire
 360 view range are pre-encoded using multiple rates.

Benchmark 2 (BS1: FoV Streaming): pre-codes view coverages with the same settings as our enhancement-tier only but coded directly with multiple rates.

Performance Evaluation

Network Trace	1	1	1	2	2	2
Solution	BS1	BS2	TTS	BS1	BS2	TTS
RollerCoaster	2.8/12%	10.8/27%		5.9/4%	27.0/10%	21.1/4%
Amsterdam	2.8/12%	10.5/25%		5.9/4%	27.3/10%	22.3/3%
Network Trace	3	3	3	4	4	4
Solution	BS1	BS2	TTS	BS1	BS2	TTS
RollerCoaster	9.0/1%	40.2/2%	36.6/0%	23.0/0%	93.1/8%	108.0/0%
Amsterdam	9.0/1%	39.3/2%	36.1/0%	23.0/0%	91.5/7%	106.3/0%

Performance Comparisons: Average Video Rendering Rate (Mbps) / Video Freeze Ratio (%)

Compared with *BS1*, a 3.7x gain in delivered VRR is achieved on average.
 Much lower video freeze ratio compared with benchmark solutions.
 Demonstrated the potentials and advantages over conventional solutions.

- □ In this work, a two-tier 360V streaming framework with prioritized buffer control is proposed.
- The proposed framework simultaneously handles both network variations and user viewing direction dynamics.
- We plan to further optimize the network and view prediction methodologies and implement the end-to-end system and incorporate perceptual quality evaluation.